Wednesday, January 24, 2007

Neural network

An interconnected assembly of simple processing elements, units or nodes, whose functionality is loosely based on the animal brain. The processing ability of the network is stored in the inter-unit connection strengths, or weights, obtained by a process of adaptation to, or learning from, a set of training patterns. Neural nets are used in bioinformatics to map data and make predictions.
An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurones) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurones. This is true of ANNs as well.

Applications of neural networks

1 Neural Networks in Practice
Given this description of neural networks and how they work, what real world applications are they suited for? Neural networks have broad applicability to real world business problems. In fact, they have already been successfully applied in many industries.
Since neural networks are best at identifying patterns or trends in data, they are well suited for prediction or forecasting needs including:
sales forecasting ,industrial process control ,customer research
data validation , risk management , target marketing
But to give you some more specific examples; ANN are also used in the following specific paradigms: recognition of speakers in communications; diagnosis of hepatitis; recovery of telecommunications from faulty software; interpretation of multimeaning Chinese words; undersea mine detection; texture analysis; three-dimensional object recognition; hand-written word recognition; and facial recognition.

2
Neural networks in medicine
Artificial Neural Networks (ANN) are currently a 'hot' research area in medicine and it is believed that they will receive extensive application to biomedical systems in the next few years. At the moment, the research is mostly on modelling parts of the human body and recognising diseases from various scans (e.g. cardiograms, CAT scans, ultrasonic scans, etc.).
Neural networks are ideal in recognising diseases using scans since there is no need to provide a specific algorithm on how to identify the disease. Neural networks learn by example so the details of how to recognise the disease are not needed. What is needed is a set of examples that are representative of all the variations of the disease. The quantity of examples is not as important as the 'quantity'. The examples need to be selected very carefully if the system is to perform reliably and efficiently.
2.1
Modelling and Diagnosing the Cardiovascular System
Neural Networks are used experimentally to model the human cardiovascular system. Diagnosis can be achieved by building a model of the cardiovascular system of an individual and comparing it with the real time physiological measurements taken from the patient. If this routine is carried out regularly, potential harmful medical conditions can be detected at an early stage and thus make the process of combating the disease much easier.
A model of an individual's cardiovascular system must mimic the relationship among physiological variables (i.e., heart rate, systolic and diastolic blood pressures, and breathing rate) at different physical activity levels. If a model is adapted to an individual, then it becomes a model of the physical condition of that individual. The simulator will have to be able to adapt to the features of any individual without the supervision of an expert. This calls for a neural network.
Another reason that justifies the use of ANN technology, is the ability of ANNs to provide sensor fusion which is the combining of values from several different sensors. Sensor fusion enables the ANNs to learn complex relationships among the individual sensor values, which would otherwise be lost if the values were individually analysed. In medical modelling and diagnosis, this implies that even though each sensor in a set may be sensitive only to a specific physiological variable, ANNs are capable of detecting complex medical conditions by fusing the data from the individual biomedical sensors.
2.2
Electronic noses
ANNs are used experimentally to implement electronic noses. Electronic noses have several potential applications in telemedicine. Telemedicine is the practice of medicine over long distances via a communication link. The electronic nose would identify odours in the remote surgical environment. These identified odours would then be electronically transmitted to another site where an door generation system would recreate them. Because the sense of smell can be an important sense to the surgeon, telesmell would enhance telepresent surgery. For more information on telemedicine and telepresent surgery

2.3 Instant Physician
An application developed in the mid-1980s called the "instant physician" trained an autoassociative memory neural network to store a large number of medical records, each of which includes information on symptoms, diagnosis, and treatment for a particular case. After training, the net can be presented with input consisting of a set of symptoms; it will then find the full stored pattern that represents the "best" diagnosis and treatment.

3
Neural Networks in business
Business is a diverted field with several general areas of specialisation such as accounting or financial analysis. Almost any neural network application would fit into one business area or financial analysis. There is some potential for using neural networks for business purposes, including resource allocation and scheduling. There is also a strong potential for using neural networks for database mining, that is, searching for patterns implicit within the explicitly stored information in databases. Most of the funded work in this area is classified as proprietary. Thus, it is not possible to report on the full extent of the work going on. Most work is applying neural networks, such as the Hopfield-Tank network for optimization and scheduling.
3.1
Marketing
There is a marketing application which has been integrated with a neural network system. The Airline Marketing Tactician (a trademark abbreviated as AMT) is a computer system made of various intelligent technologies including expert systems. A feedforward neural network is integrated with the AMT and was trained using back-propagation to assist the marketing control of airline seat allocations. The adaptive neural approach was amenable to rule expression. Additionaly, the application's environment changed rapidly and constantly, which required a continuously adaptive solution. The system is used to monitor and recommend booking advice for each departure. Such information has a direct impact on the profitability of an airline and can provide a technological advantage for users of the system. [Hutchison & Stephens, 1987]
While it is significant that neural networks have been applied to this problem, it is also important to see that this intelligent technology can be integrated with expert systems and other approaches to make a functional system. Neural networks were used to discover the influence of undefined interactions by the various variables. While these interactions were not defined, they were used by the neural system to develop useful conclusions. It is also noteworthy to see that neural networks can influence the bottom line.
3.2
Credit Evaluation
The HNC company, founded by Robert Hecht-Nielsen, has developed several neural network applications. One of them is the Credit Scoring system which increase the profitability of the existing model up to 27%. The HNC neural systems were also applied to mortgage screening. A neural network automated mortgage insurance underwritting system was developed by the Nestor Company. This system was trained with 5048 applications of which 2597 were certified. The data related to property and borrower qualifications. In a conservative mode the system agreed on the underwritters on 97% of the cases. In the liberal model the system agreed 84% of the cases. This is system run on an Apollo DN3000 and used 250K memory while processing a case file in approximately 1 sec.

Wednesday, January 03, 2007

Parallel Computing

Parallel computing is the simultaneous execution of the same task (split up and specially adapted) on multiple processors in order to obtain results faster. The idea is based on the fact that the process of solving a problem usually can be divided into smaller tasks, which may be carried out simultaneously with some coordination.

parallel computing is the simultaneous use of multiple compute resources to solve a computational problem.
To be run using multiple CPUs
A problem is broken into discrete parts that can be solved concurrently
Each part is further broken down to a series of instructions
Instructions from each part execute simultaneously on different CPUs
The compute resources can include:
A single computer with multiple processors;
An arbitrary number of computers connected by a network;
A combination of both.
The computational problem usually demonstrates characteristics such as the ability to be:
Broken apart into discrete pieces of work that can be solved simultaneously;
Execute multiple program instructions at any moment in time;
Solved in less time with multiple compute resources than with a single compute resource.
Parallel computing is an evolution of serial computing that attempts to emulate what has always been the state of affairs in the natural world: many complex, interrelated events happening at the same time, yet within a sequence. Some examples:
Planetary and galactic orbits
Weather and ocean patterns
Tectonic plate drift
Rush hour traffic in LA
Automobile assembly line
Daily operations within a business
Building a shopping mall
Ordering a hamburger at the drive through.
Traditionally, parallel computing has been considered to be "the high end of computing" and has been motivated by numerical simulations of complex systems and "Grand Challenge Problems" such as:
weather and climate
chemical and nuclear reactions
biological, human genome
geological, seismic activity
mechanical devices - from prosthetics to spacecraft
electronic circuits
manufacturing processes
Today, commercial applications are providing an equal or greater driving force in the development of faster computers. These applications require the processing of large amounts of data in sophisticated ways. Example applications include:
parallel databases, data mining
oil exploration
web search engines, web based business services
computer-aided diagnosis in medicine
management of national and multi-national corporations
advanced graphics and virtual reality, particularly in the entertainment industry
networked video and multi-media technologies
collaborative work environments
Ultimately, parallel computing is an attempt to maximize the infinite but seemingly scarce commodity called time.
http://www.llnl.gov/computing/tutorials/parallel_comp/#Whatis